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Investigation of Mode Coupling Due to Ohmic
Wall Losses in Overmoded Uniform and

Varying-Radius Circular Waveguides
by the Method of Cross Sections
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Abstract—The effect of ohmic wall losses on mode coupling in
overmoded varying-radius circular waveguides is investigated.
Mode coupling and multimode propagation in uniform lossy-wall
circular waveguides is also discussed. The expressions for the
coupling coefficients are given by line integrals of the power-nor-
malized fields of the normal modes along the boundary of the
waveguide cross section. Numerical results are presented for the
case of propagation of anHE11-like mode excitation in a uniform
smooth lossy-wall circular waveguide.

Index Terms—Hybrid HE11 mode, lossy-wall waveguides,
method of cross sections, mode coupling, ohmic wall loss, over-
moded waveguides.

I. INTRODUCTION

H IGH-POWER transmission at millimeter-wave frequen-
cies is normally accomplished in highly overmoded

waveguides to reduce attenuation and avoid breakdown. This
is especially important in many transmission and mode-con-
version systems used with gyrotrons where high-order modes
are often generated. In treating dissipated power in overmoded
lossy-wall waveguides, one needs to take into account the
interference of currents due to the different modes at the
waveguide wall. In the past, inclusion of the effect of ohmic
wall loss on propagating modes in overmoded waveguides was
commonly treated by evaluating the attenuation constant of
each mode individually by means of the power-loss method,
and the coupling mechanism was assumed to be nondissipative
[1]. It is sometimes incorrect to treat the attenuation of indi-
vidual modes separately in a multimode waveguide because the
relative phase of the modes present can have a strong effect on
the power dissipated. The conventional power-loss approach
in evaluating the attenuation constants of modes individually
will give smoothly decaying power loss along the waveguide,
which is not always correct. In this paper, we extend and verify
a formulation of the coupled-mode formalism [2], [3], which
correctly predicts the power dissipated in the waveguide wall.
We derive the effect of ohmic wall losses on the coupling
coefficients in a varying-radius circular waveguide and discuss
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mode coupling and multimode propagation in a uniform
lossy-wall waveguide.

We represent the fields at any cross section of a lossy-wall
varying-radius guide as a superposition of the fields of the
modes of a uniform guide of the same cross section, but with
a perfectly conducting wall. The mode amplitudes along the
guide are shown to be described by a system of first-order
coupled ordinary differential equations. The coefficients of
this system are called the coupling coefficients. This method
of derivation of the coupling coefficients is sometimes called
the method of cross sections. This method has been used in
analyzing mode coupling in waveguides with different types of
wall nonuniformities such as waveguides with a varying-radius
wall profile for the case of azimuthally symmetric transverse
electric modes [2], [4], corrugated and smooth-wall waveguides
with various wall distortion [5], [6], and coaxial waveguides
with varying radius center and outer conductors [7].

The integral expressions for the coupling coefficients
are derived in Section II. In Section III, the solution of the
coupled-mode equations for uniform lossy-wall waveguides
is discussed. The dissipated power at the wall predicted by
the coupled-mode equations and the power-loss formula is
compared in Section IV. Some numerical results for multimode
propagation and power loss for an -like combination of
modes are given in Section V, followed by concluding remarks
in Section VI.

II. I NTEGRAL EXPRESSIONS FOR THECOUPLING COEFFICIENTS

IN VARYING-RADIUS CIRCULAR WAVEGUIDES WITH

OHMIC WALL LOSSES

We assume that the axis of the varying-radius waveguide co-
incides with the axis of the cylindrical coordinate system,

, and and that the guide is homogeneously filled with an
isotropic lossless medium, the plane wavenumber of which is

, where and are the permeability and the per-
mittivity, respectively, of the medium inside the guide. The wall
of the guide is a slightly lossy conductor. The time variation is
taken to be .

The boundary conditions at the wall of the guide are

(1a)

(1b)
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where is the surface impedance of the conducting wall, and
is the angle that a line tangent to the wall makes with the

axis. The approximate boundary conditions above are valid if
, where is the intrinsic impedance of the

medium filling the guide, and , where is the
smallest radius of curvature of the wall [8]. Furthermore, the
skin depth of the conducting wall must be much smaller than
the wall thickness.

We consider some cross section of the varying-radius wave-
guide at and construct a uniform waveguide
with a perfectly conducting wall with the same local cross sec-
tion . We then expand the fields of the varying-radius guide
at in terms of the normalized fields of the modes of the
uniform guide as follows:

(2)

(3)

Here, and are only functions of the trans-
verse coordinates. The positive integersand are used as in-
dexes for the eigenmodes. Furthermore, the subscriptsand ,
respectively, denote the transverse and-directed components
of the fields. The “ ” over the functions in (2) and (3) indicates
that these functions are normalized such that they satisfy the fol-
lowing orthogonality relations:

(4)

(5)

where the superscript denotes the complex conjugate. Due
to the normalization relations (4) and (5), the complex power
flow in each mode is . The series expansions (2)
and (3) do not converge uniformly. For example, and
vanish at the wall of the guide, but according to (1a) and (1b),

and do not. Therefore, we have been cautious not to take
term-by-term differentiation of the infinite series (2) and (3) in
the derivation of the coupled-mode equations. (Otherwise, the
derivation of the coupling coefficients would have been valid
only when the series expansions (2) and (3) converge uniformly.
This would have put the following constraint on the nonuniform
waveguide as seen form the boundary conditions of (1): 1) the
guide wall of the nonuniform waveguide must be everywhere
almost parallel to the guide axis (i.e., the rate of change of the
guide cross section must be very small) and 2) must
be very small.)

The system of coupled differential equations that describe
the complex coefficients and of series expansions (2)
and (3) can be obtained from Maxwell’s curl equations and the
boundary conditions (1)

(6a)

(6b)

where

(7)

(8a)

(8b)

Here, , , and are the phase constant, the transverse wave
impedance, and the cutoff wavenumber, respectively, of mode
in the lossless uniform waveguide with cross section. In (7),
the integral is taken over the cross section of the guide and, in
(8), the line integral is along the perimeter of the unperturbed
waveguide cross section. Furthermore, in (8), , where

is the waveguide radius at the local cross section.
For our purposes, it is convenient to write the coupled-mode

equations not in terms of the modal voltage and current, but in
terms of the normalized complex amplitudes of the forward and
backward propagating modes. The relation between these two
formalism is as follows:

(9)

The power transported in the -direction by the th mode is
given by and that in the -direction by .

If and in (6) are represented in terms of and ,
we may obtain the coupled-mode equations for the forward and
backward propagating modes in a varying-radius guide with
ohmic wall loss

(10a)

(10b)

Here, the coupling coefficients are given by

(11)

and the coupling coefficients are given below.
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If both and represent TE modes or TM modes

(12a)

(12b)

If is a TE mode and is a TM mode

(13)

In the above equations, and are, respectively,
the power-normalized electric and magnetic fields given by

(14)

(15)

The fields above satisfy the power normalization

(16)

In the derivation of the coupling coefficients, the higher order
terms in have been neglected since their effect is negligible
for good conductors.

The coupled-mode equations (10) are valid in a varying-ra-
dius waveguide with a slowly varying cross section [7]. In the
voltage–current formulation (6), it is not necessary to require
the slowly varying constraint if a sufficient number of evanes-
cent modes are included [9].

We notice that the arise from the wall loss and the
arise due to the radius variation. We also notice from (11) that
the coupling due to ohmic loss is dependent on, the angle that
the waveguide wall makes with theaxis. The coupling coeffi-
cients are the same as the coupling coefficients for the case
of a perfectly conducting varying-radius circular waveguide [5],
[10].

In this paper, we have only considered a varying-radius per-
turbation. For more general deformations with the guide wall
described by , where , such as waveg-
uides with ellipticity, curvature, or multifoil perturbations, the
boundary conditions in (1) and the coupling coefficients due to
loss in (8) or (11) are still valid to the zeroth order in. The next
higher order term is one order of magnitude smaller in. Thus,
for coupling due to losses, the wall perturbations arising from
can be neglected for smalleven though may produce signif-
icant “lossless” coupling.

In a circular waveguide, the single-mode numbersor take
the place of the entire - or -mode designation. The

expressions for the mode functions and of TE
and TM modes in a lossless uniform circular waveguide can be
found in [11]. In our calculations and analysis in this paper, the
expressions for the field components are chosen such that the
sign of the radial function part of is positive at the wall
for both and modes.

From the integral equations (11)–(13), for coupling due to
wall loss and/or radius variation, we can make the following
general statements.

1) Only modes with the same azimuthal indexcouple to
each other.

2) For stationary modes, only modes with the same “polar-
ization,” i.e., either or

couple to each other.
3) For rotating modes, only modes with the same sense of

rotation, i.e., either or
couple to each other.

4) and modes are not coupled to each other.

III. SOLUTION OF THE COUPLED-MODE EQUATIONS IN A

UNIFORM LOSSY-WALL WAVEGUIDE

In the remainder of this paper, we will focus only on uniform
waveguides made of conducting walls that are slightly
lossy with being the surface impedance of the wall. Here,
the coupling mechanism arises only due to the resistive nature
of the waveguide wall and, hence, the coupling coefficients are
constant along the uniform waveguide. We will also neglect the
backward propagating modes. We will show in Section V that
neglecting the backward coupled modes is a justifiable approxi-
mation, except when incident modes are propagating very close
to cutoff.

We will solve the coupled-mode equations in the following
form:

(17)

where the transmission matrix gives the value of the
complex amplitude vector at any point in terms of the
known initial amplitudes at . The column vector

consists of the complex mode amplitudes, where
as its components.

Below, we present the analysis for only two modes, although
the procedure and the concepts can be applied to any number
of modes. The coupled-mode equations for two forward propa-
gating modes in a uniform waveguide with ohmic wall loss are
obtained from (10) and (11) and are as follows:

(18)

and are as shown in (19a)–(19c) at the bottom of the following
page, where is the real part of . In (19b), and ,

are the axial and azimuthal components, respectively,
of the power normalized magnetic fields of theth mode at the
wall. We notice that the “attenuation constant” and “phase con-
stant” matrices are Hermitian, i.e.,

and (20)
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where denotes the transpose and conjugation.
To solve the coupled-mode equations (18) for the unknown

with a given initial condition at , we suppose that
the 2 2 matrix has two linearly independent eigenvectors
and these vectors are chosen to be the columns of a 22 matrix

. Then, by using the change of variables

(21)

Equation (18) reduces to

(22a)

where

(22b)

is a diagonal matrix with the eigenvalues of [along its diag-
onal. The eigenvalues can be obtained as follows:

and (23a)

where

(23b)

(23c)

The eigenvalues and above are distinct; hence, the two
corresponding eigenvectors are automatically independent [12].
Therefore, the diagonalization above is possible.

The change of variables by (21) implies that the eigenvectors
of are chosen as the new basis vectors. The column vector

consists of the complex amplitudes, where of the
new set of modes as its components. The new set of modes are
actually the eigenmodes of the lossy-wall waveguide.

The system (22a) is uncoupled and the new normal modes
with complex amplitudes and propagate independently.
However, the coupling matrix is not normal, i.e., it does not
commute with its conjugate transpose. Therefore, its eigenvec-
tors are not orthogonal [12]. Hence, although the new basis vec-
tors are independent, they are not orthogonal. This shows that,

although the new modes with complex amplitudesand are
uncoupled, they are not power orthogonal, i.e., the total power
transported by the new modes is not the sum of the powers car-
ried by each mode individually. In confirmation of this state-
ment, we have shown independently in another place that the
eigenmodes of lossy-wall uniform waveguides are not power
orthogonal [13]. When the modes are degenerate, i.e., when in
(19c) , is normal. Thus, for degenerate modes only,
the new modes are not only decoupled, but they are also power
orthogonal. This conclusion is consistent with the previous work
done by Gustincic [14] and Collin [15] where they show that
when a set of modes are degenerate in a uniform lossy-wall
waveguide, a new set of modes can be obtained by linear com-
bination of the original degenerate modes such that these new
modes are uncoupled, as well as power orthogonal. It should
be emphasized that the coupled-mode formulation developed
above is valid for both degenerate and nondegenerate modes.

By combining (21) and (22), the transmission matrix
is

(24a)

where

(24b)

The explicit expressions for the elements of the transmission
matrix are

(25a)

(25b)

(25c)

(25d)

IV. COMPARISON OFDISSIPATEDPOWER OBTAINED BY THE

COUPLED-MODE EQUATIONS AND THE POWER-LOSSMETHOD

In this section, we use (17) to calculate the ohmic power loss
per unit length. We then show that when more than one mode

(19a)

(19b)

(19c)



SHAFII AND VERNON: INVESTIGATION OF MODE COUPLING DUE TO OHMIC WALL LOSSES 1365

propagates in the waveguide, the coupled-mode equations pre-
dict that the power loss per unit length varies along the wave-
guide due to the interference of the modal currents in the wall.
We will also derive the dissipated power by the power-loss for-
mula and show that the two methods above give the same result
over a very short waveguide length. This agreement is a partial
validation of the coupled-mode equation method.

The total power carried by modes at any cross section is
. The power loss per unit length can then be determined by

making use of the coupled-mode equations (18) and relations
(20) to obtain

(26)

which can be expressed in terms of the input vectoras fol-
lows:

(27)

Notice that only appears in the above equation for the power
loss. This is because the part of coupling matrix is
anti-Hermitian and, hence, it does not contribute to loss. For the
two-mode problem, (26) yields, in terms of the elements of

(28)
Each of the first two terms on the right-hand side of the relation
above arises only due to the magnitude of a single modal ampli-
tude. The last two terms, however, arise from the coupling effect
due to the wall loss, and their values depend on the magnitudes
of both modes, as well as their relative phases. Hence, at loca-
tions along the waveguide where the modes are out-of-phase (by
our convention), power loss is small, but where the modes are
in-phase, power loss is larger. Thus, depending on the relative
phases of the modes, ohmic loss may be minimal at some loca-
tions, while at others, the dissipated power may be appreciable.

The power loss can also be calculated by the following for-
mula:

(29)

where is the rms surface current that is obtained from the
total tangential magnetic field at the wall, andis the waveguide
radius. We will show that (28) and (29) yield the same result for
the dissipated ohmic power at the wall over a short length.
Assume that the two modes have the following magnetic field
components tangent to the wall:

and (30)

where . The fields above are normalized such that the
power carried by theth mode is . The surface current at
the wall is , where is now the total magnetic

field. The power loss over a short distancecan be derived
explicitly from (29) and (30) as follows:

(31)

Over a very short waveguide length, the modal magnetic
fields of a lossless waveguide (30) may be used here since the
modal fields are not significantly perturbed by the wall loss.
Thus, the dissipated power can be obtained from (31) by let-
ting approach zero as follows:

(32)

Notice that (28) and (32) yield the same result for the dissipated
power.

V. NUMERICAL RESULTS FORPROPAGATION OF

AN -LIKE MODE

The hybrid mode in a corrugated circular waveguide
is an ideal mode for waveguide transmission systems [16],
[17]. It is suited for low-loss transmission due to its very
low attenuation. It also has a Gaussian-like radiation pattern
when it is radiated from an open-ended waveguide and, hence,
it couples strongly to the fundamental Gaussian free-space
mode. The mode can be expanded in terms of the
and modes of a smooth-wall waveguide at any given
transverse plane. However, it can reasonably be represented by
only the and modes with power compositions of
approximately 85% and 15%, respectively, and a phase differ-
ence of 180 at the waveguide wall. When the two modes are
out-of-phase, the azimuthal components of the magnetic fields
of the two modes almost cancel each other at the waveguide
wall, which leads to the overall low ohmic loss.

For our study, we assume that the mode mixture above is in-
jected into a uniform smooth lossy-wall circular waveguide. In
Table I, we compare the results of the dissipated power over
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TABLE I
DISSIPATEDPOWER IN A LOSSY-WALL CIRCULAR WAVEGUIDE (OVER A

LENGTHd) FOR ATE AND- TM -MODE MIXTURE (POWERCOMPOSITION:
85%TE AND 15%TM , WAVEGUIDE DIAMETER = 0:64 cm, FREQUENCY

= 60 GHz, WALL CONDUCTIVITY = 7� 10 S/m)

Fig. 1. Magnitude of theTE –TM coupling coefficient due to ohmic
wall loss versus the guide radius in a circular waveguide assuming a surface
resistivity of ideal copper. The cutoff radius for theTM mode is 0.3047 cm.

different waveguide lengths calculated from the coupled-mode
formulation and the power-loss formula (31) for a waveguide
with the wall resistivity of graphite. We notice that the calcu-
lated values from the two methods converge as the waveguide
length becomes much smaller than the free-space wavelength.
In this table, we have also listed the results for the case where,
at the input of the waveguide section, the azimuthal components
of the magnetic fields of the two modes are in-phase and, hence,
they add at the wall. The power dissipated in a small length is
almost five times greater for this case.

The injected and modes considered above
couple energy due to the lossy nature of the wall. The cou-
pling coefficient can be calculated from (19), and its
magnitude has been plotted versus the waveguide radius in
Fig. 1 for a circular copper waveguide with an input signal
of 60 GHz. As observed in this figure, near the cutoff radius
of the mode, the coupling coefficient becomes very
large. In a uniform waveguide with its radius in this region,
the backward coupled and modes will be excited
with appreciable amplitude. Furthermore, higher order
and evanescent modes may also be excited with small
amplitude. However, coupling to these modes is not included
in the coupled-mode formulation (18).

As was mentioned in Section III, the modes described byin
(22) define the eigenmodes of a uniform lossy-wall waveguide

Fig. 2. Percent difference between theTM attenuation constant calculated
by the coupled-mode equations and by the eigenmode expansion method
assuming a surface resistivity of ideal copper. TenTE and tenTM modes
are included for the eigenmode expansion method.

Fig. 3. Power loss per unit length along a lossy-wall circular waveguide with
a 0.64-cm diameter assuming a surface resistivity of ideal copper. TheTE

andTM modes are injected atz = 0 with a power composition of 85% and
15%, respectively, and a phase difference of 180.

with and as their propagation constants. Therefore, we
can check the validity of the coupled-mode equations (18) near
the cutoff radius of the mode by comparing with that
obtained by other methods for obtaining the propagation con-
stants of eigenmodes of uniform smooth lossy-wall waveguides
such as the eigenmode expansion method [18] or Jackson’s per-
turbational analysis method [19]. In Fig. 2, we have plotted
the percent difference between the attenuation constant of the

mode calculated by (23) and by the eigenmode expansion
method where ten and ten modes were used. This
figure shows that there is only 2% deviation in the attenuation
constant when the waveguide radius is only 0.1% above cutoff.
Hence, we believe that the coupled-mode equations (18) cor-
rectly represent the interaction of modes due to wall loss when
the waveguide radius is larger than 0.1% above the cutoff radius
of the mode. If the backward, as well as the forward prop-
agating and modes are used in the coupled-mode
equations, this restriction can be relaxed, i.e., in this case, the
waveguide radius may be chosen to be closer to the cutoff
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Fig. 4. Power loss per unit length along a lossy-wall circular waveguide with
a 0.64-cm diameter assuming a surface resistivity of ideal graphite. TheTE

andTM modes are injected atz = 0 with a power composition of 85% and
15%, respectively, and a phase difference of 180.

Fig. 5. Amplitude of theTE mode (of theTE andTM combination)
along the lossy-wall circular waveguide with 0.64-cm diameter assuming a
surface resistivity of ideal copper.

radius than the above-mentioned 0.1%. This could be important
in analyzing the cavity region of gyrotrons that often operate
very close to the cutoff frequency of the mode being generated.

The effect of the coupled backward propagating mode
on this same mode propagating in the forward direction in a
uniform waveguide with a radius near the cutoff radius of the

mode can be demonstrated as follows. In the voltage–cur-
rent formulation of the coupled-mode equations (6) for uniform
waveguides , we neglect the effect of coupling, i.e., re-
tain only the term where is the mode designation for
the mode. We can then obtain an analytical expression for
the propagation constant of the mode, which is identical
with that obtained by Jackson [19] for uniform lossy-wall cir-
cular waveguides. This expression gives a sensible result even
at or below the cutoff radius of the mode. However, if we
neglect the effect of the backward coupled mode, the resulting
attenuation constant of the mode becomes very large near
the cutoff radius.

In varying-radius waveguides with perfectly conducting
walls, the coupling coefficients are given by (12) and (13).

Fig. 6. Amplitude of theTM mode (of theTE andTM combination)
along the lossy-wall circular waveguide with 0.64-cm diameter assuming a
surface resistivity of ideal copper.

Fig. 7. Amplitude of theTE mode (of theTE andTM combination)
along the lossy-wall circular waveguide with 0.64-cm diameter for both copper
and graphite waveguides.

We see that the coupling coefficients, here, near the cutoff of
either mode also become very large. This is because the radial
component of the electric field and the axial component of the
magnetic field of the TE modes and the azimuthal component
of the magnetic field of the TM modes become very large at
cutoff. The divergence of the coupling coefficients at cutoff
arise due to neglecting the backward propagating modes. In the
voltage–current formulation, the coupling coefficients given by
(7) are finite everywhere, even at cutoff.

The complex-amplitude coupled-mode equations (10) are not
suitable to study the effect of the coupled evanescent modes. In
this situation, it is preferable to use the voltage–current formu-
lation of the coupled-mode equations (6), which can incorporate
evanescent, as well as propagating modes.

In Fig. 3, the ohmic wall loss per unit length from (27) has
been plotted over several beat wavelengths of and
modes in a 0.64-cm-diameter copper waveguide. The ohmic
wall loss per unit length has been plotted for a graphite wave-
guide with the same diameter shown in Fig. 4. Graphite has
much higher wall resistivity than copper and, hence, can be used
in the design of lossy wavguides. As seen from these two fig-
ures, at the waveguide input, when the two mode are out-of-
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Fig. 8. Amplitude of theTM mode (of theTE andTM combination)
along the lossy-wall circular waveguide with 0.64-cm diameter for both copper
and graphite waveguides.

Fig. 9. Amplitude of theTM mode (of theTE andTM combination)
along the lossy-wall circular waveguide with 2.779-cm diameter assuming a
surface resistivity of ideal copper.

phase, ohmic wall dissipation is very small due to the cancella-
tion of the azimuthal components of the magnetic fields. How-
ever, as can be seen from the graph, at approximately half a
beat wavelength from the input, the power loss becomes max-
imum. At this location, the and modes are in-phase
and the magnetic-field components add. The pattern then almost
repeats itself after each beat wavelength. In these figures, we
have also plotted the result obtained by means of the attenua-
tion constants of the two separate modes using the conventional
power-loss method which, as seen, incorrectly gives smoothly
decaying power loss along the waveguide. In Figs. 5 and 6, the
amplitudes of the individual modes are plotted for copper wave-
guide. Figs. 7 and 8 compare the amplitudes of the individual
modes for copper and graphite waveguides. The ripple-like be-
havior of the curves in Figs. 5–8 arise from the coupling be-
tween the modes due to wall loss. If the effect of coupling was
neglected, the curves would be smoothly decaying exponential
(almost straight lines). In Figs. 9 and 10, we have also plotted
the amplitude of the mode in a larger diameter waveguide
over a beat wavelength for copper and graphite waveguides, re-
spectively. These curves demonstrate that here the mode
actually gains a small amount of power initially from the

Fig. 10. Amplitude of theTM mode (of theTE andTM combination)
along the lossy-wall circular waveguide with 2.779-cm diameter for both copper
and graphite waveguides.

mode due to ohmic coupling although, as expected, the total
power in the two modes monotonically decreases from the ini-
tial value.

VI. CONCLUSIONS

In this paper, we have derived the effect of ohmic wall loss on
the coupling coefficients in a varying-radius circular waveguide.
We have shown that the coupled-mode equations correctly pre-
dict that the power loss along the waveguide may vary and, in
this case, depends on the relative phases of the modes, as well
as their magnitudes. We have shown that, in high-power appli-
cations, this effect will lead to the creation of “hot” regions on
the waveguide wall for the case of propagation of an -like
mode input to a uniform overmoded smooth lossy-wall wave-
guide. We have shown that the complex-amplitude formula-
tion of the coupled-mode equations for the forward propagating
modes is valid for the multimode analysis of uniform waveg-
uides if the waveguide radius is larger than 0.1% above the
cutoff radius of the highest order incident mode (in our study,
the mode). If the backward coupled modes are also in-
cluded, the coupled-mode equations are valid even nearer to the
cutoff radius.
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