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Investigation of Mode Coupling Due to Ohmic
Wall Losses in Overmoded Uniform and
Varying-Radius Circular Waveguides
by the Method of Cross Sections

Jamal Shafii and Ronald J. Vernddember, IEEE

Abstract—The effect of ohmic wall losses on mode coupling in mode coupling and multimode propagation in a uniform
overmoded varying-radius circular waveguides is investigated. |ossy-wall waveguide.
Mode coupling and multimode propagation in uniform lossy-wall We represent the fields at any cross section of a lossy-wall
circular waveguides is also discussed. The expressions for thevarying—radius guide as a superposition of the fields of the

coupling coefficients are given by line integrals of the power-nor- . . . .
malized fields of the normal modes along the boundary of the modes of a uniform guide of the same cross section, but with

waveguide cross section. Numerical results are presented for the & perfectly conducting wall. The mode amplitudes along the
case of propagation of arHLE; ; -like mode excitation in a uniform  guide are shown to be described by a system of first-order
smooth lossy-wall circular waveguide. coupled ordinary differential equations. The coefficients of
Index Terms—Hybrid HE,; mode, lossy-wall waveguides, this system are called the coupling coefficients. This method
method of cross sections, mode coupling, ochmic wall loss, over-0f derivation of the coupling coefficients is sometimes called
moded waveguides. the method of cross sections. This method has been used in
analyzing mode coupling in waveguides with different types of
wall nonuniformities such as waveguides with a varying-radius
wall profile for the case of azimuthally symmetric transverse
IGH-POWER transmission at millimeter-wave frequenelectric modes [2], [4], corrugated and smooth-wall waveguides
cies is normally accomplished in highly overmodedvith various wall distortion [5], [6], and coaxial waveguides
waveguides to reduce attenuation and avoid breakdown. Thiigh varying radius center and outer conductors [7].
is especially important in many transmission and mode-con-The integral expressions for the coupling coefficients
version systems used with gyrotrons where high-order modag derived in Section II. In Section 1ll, the solution of the
are often generated. In treating dissipated power in overmodsslipled-mode equations for uniform lossy-wall waveguides
lossy-wall waveguides, one needs to take into account tikediscussed. The dissipated power at the wall predicted by
interference of currents due to the different modes at thige coupled-mode equations and the power-loss formula is
waveguide wall. In the past, inclusion of the effect of ohmicompared in Section IV. Some numerical results for multimode
wall loss on propagating modes in overmoded waveguides waspagation and power loss for & ;-like combination of
commonly treated by evaluating the attenuation constant bdes are given in Section V, followed by concluding remarks
each mode individually by means of the power-loss metho, Section VI.
and the coupling mechanism was assumed to be nondissipative
[1]. It is sometimes incorrect to treat the attenuation of indj; | y\TEGRAL EXPRESSIONS FOR THECOUPLING COEFFICIENTS
wdugl modes separately in a multimode waveguide because the | \/aryING-RADIUS CIRCULAR WAVEGUIDES WITH
relative phas_e qf the modes present_ can have a strong effect on OHMIC WALL LOSSES
the power dissipated. The conventional power-loss approach
in evaluating the attenuation constants of modes individually e assume that the axis of the varying-radius waveguide co-
will give smoothly decaying power loss along the waveguid&)cides with thez axis of the cylindrical coordinate system
which is not always correct. In this paper, we extend and verif andz and that the guide is homogeneously filled with an
a formulation of the coupled-mode formalism [2], [3], whictisotropic lossless medium, the plane wavenumber of which is
correctly predicts the power dissipated in the waveguide wall.= w+/(j¢), whereyu ande are the permeability and the per-
We derive the effect of ohmic wall losses on the couplingittivity, respectively, of the medium inside the guide. The wall
coefficients in a varying-radius circular waveguide and discus$éthe guide is a slightly lossy conductor. The time variation is
taken to be:’«*,
The boundary conditions at the wall of the guide are
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whereZ,, is the surface impedance of the conducting wall, and The system of coupled differential equations that describe
g is the angle that a line tangent to the wall makes withthethe complex coefficientd’. and I, of series expansions (2)
axis. The approximate boundary conditions above are validaifd (3) can be obtained from Maxwell’s curl equations and the
Z,, < n, wheren = /(1:/¢) is the intrinsic impedance of the boundary conditions (1)

medium filling the guide, andZ,, <« nka., wherea, is the oV

smallest radius of curvature of the wall [8]. Furthermore, the Y = iZ, B, + Z C,. V. + Z RY_I. (6a)
skin depth of the conducting wall must be much smaller than dz
the wall thickness. dl

We consider some cross section of the varying-radius wave-
guideS = S, atz = 2, and construct a uniform waveguide
with a perfectly conducting wall with the same local cross sec-

= g—” Vo=>_ Crl.+> RV, (6b)

tion S,. We then expand the fields of the varying-radius guid\ghere
at»z = 2, in terms of the normalized fields of the modes of the
uniform guide as follows: Cur // Ctr ew s @)
E. = Vi (z)ew (p, v
: Z w(p, 9) Ry =——t 7{ 15, he dl (8a)
E.= Z U-r(7)6z‘r(p7 d)) (2) Rlz/‘r _ I?yk‘rQ Zw COS9jI§f~lZ,,71zr dl. (8b)
(Jwn)
H.= Z L(2)he-(p, ¢) Here,3,, Z,,, andk, are the phase constant, the transverse wave
R impedance, and the cutoff wavenumber, respectively, of mode
H.= Z i-(2)har(p, D). (3) inthe lossless uniform waveguide with cross secfignin (7),

the integral is taken over the cross section of the guide and, in

. (8), the line integral is along the perimeter of the unperturbed
Here,e-(p, ¢) andh,(p, ¢) are only functions of the trans- waveguide cross section. Furthermore, in @)= a dp, where
verse coordinates. The positive integerandy are used as in- g js the waveguide radius at the local cross secfign
dexes for the eigenmodes. Furthermore, the subscrautsl =, For our purposes, it is convenient to write the coupled-mode
respectively, denote the transverse andirected components equations not in terms of the modal voltage and current, but in
of the fields. The A" over the functions in (2) and (3) indicatesterms of the normalized complex amplitudes of the forward and
that these functions are normalized such that they Satisfy the f@&ckward propagating modes. The relation between these two

lowing orthogonality relations: formalism is as follows:
/ / & 65, dS =6, Vi =vZ, (Ai + A, )
So 1
I, = AT — A7),
// éZ‘réZu dS =6, (4) V Z, ( v v ) (9)
S,
L The power transported in thea, -direction by thesth mode is
// by, -hy, dS =6 given by| A}|? and that in the-4_-direction by| A |?.

If V,, andI, in (6) are represented in terms af" and A,
/ h..h*, dS =6, (5) we may obtain the coupled-mode equations for the forward and
backward propagating modes in a varying-radius guide with

ohmic wall loss
where the superscript denotes the complex conjugate. Due

to the normalization relations (4) and (5), the complex poweiA;} T\ At _ _
flow in each moder is P, = V.. I*. The series expansions (2) 4, =—ipAL +Z( K+ )A +Z( W+SW)
and (3) do not converge uniformly. For examplg, ande. -

vanish at the wall of the guide, but according to (1a) and (1b), (102)
E4andE. do not. Therefore, we have been cautious not to také4, . - N+ + ot
term-by-term differentiation of the infinite series (2) and (3) in dz =+ifeA +Z( )A +Z(h” S )

the derivation of the coupled-mode equations. (Otherwise, the (10b)

derivation of the coupling coefficients would have been valid

only when the series expansions (2) and (3) converge uniformiyare, the coupling coefficients. are given by
This would have put the following constraint on the nonuniform
waveguide as seen form the boundary conditions of (1): 1) th N 1 1 .

guide wall of the nonuniform waveguide must be everywher vr =75 Osejgz“’hﬂ’h” di ¥ 2 cosf j{ Zuwhgyhor dl
almost parallel to the guide axis (i.e., the rate of change of the (11)
guide cross sectioftan #) must be very small) and Zj,, must

be very small.) and the coupling coefficients’_ are given below.
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If both »» and7 represent TE modes or TM modes expressions for the mode functiods p, ¢) andﬂ,(p, ¢)of TE
and TM modes in a lossless uniform circular waveguide can be
kE = 1 1 j[tane found in [11]. In our calculations and analysis in this paper, the
2B F B expressions for the field components are chosen such that the
. (wuhiyhzriwuhzyhm—wce};,epr) dl, v+  Sign of the radial function part dty, mn is positive at the wall
for both TE,,,,, andTM,,,,, modes.
(12a) From the integral equations (11)—(13), for coupling due to
_ 1 . 11 dz; wall loss and/or radius variation, we can make the following
Ko, = — = j{tan@hwem al— - — —
2 2 Z. dz general statements.
Kk =0. (12b) 1) Only modes with the same azimuthal indexcouple to
each other.
If »is a TE mode ane is a TM mode 2) For stationary modes, only modes with the same “polar-
1 ization,” i.e., eitherhy . o sin (me) or Ay, mn o €OS
—rf =r, =rIF= —3 j[tan fcy, hgr dl. (13) (m¢) couple to each other.

3) For rotating modes, only modes with the same sense of
rotation, i.e., eithehy, ,,,, x exp (jme) or hy mn X
exp (—jmde) couple to each other.

4) TE,,, andTMg,, modes are not coupled to each other.

In the above equations, (p, ¢) andh. (p, ¢) are, respectively,
the power-normalized electric and magnetic fields given by

€t = \/E‘rét‘r
1 1 ~ Ill. SoLuTION OF THE COUPLED-MODE EQUATIONS IN A
Cr = T kré.r (14) UNIFORM LOSSY-WALL WAVEGUIDE
. In the remainder of this paper, we will focus only on uniform
hy = N hy waveguideg# = 0) made of conducting walls that are slightly
1 . lossy with Z,, being the surface impedance of the wall. Here,
he.r = oV Zrksher. (15)  the coupling mechanism arises only due to the resistive nature
of the waveguide wall and, hence, the coupling coefficients are
The fields above satisfy the power normalization constant along the uniform waveguide. We will also neglect the
backward propagating modes. We will show in Section V that
‘// (err x i) 4. dS| =1. (16) neglecting the backward coupled modes is a justifiable approxi-
s, mation, except when incident modes are propagating very close
In the derivation of the coupling coefficients, the higher ordet(r) cutoff.. . . .
) . : X - - We will solve the coupled-mode equations in the following
terms inZ,, have been neglected since their effect is negl|g|b]f%rm_

for good conductors.
The coupled-mode equations (10) are valid in a varying-ra- A(z) = [M(2)]4, (17)

dius waveguide with a slowly varying cross section [7]. In the

voltage—current formulation (6), it is not necessary to requirghere the transmission matr[d(z)] gives the value of the

the slowly varying constraint if a sufficient number of evanesomplex amplitude vectadA(~) at any pointz in terms of the

cent modgs are included [_9]. known initial amplitudesA, at z = 0. The column vector
We notice that thes?: arise from the wall loss and the", 4 consists of the complex mode amplitudds, wherer =
arise due to the radius variation. We also notice from (11) thﬂ’t27 3,...,as its components.

the coupling due to ohmic loss is dependentpthe angle that  Bejow, we present the analysis for only two modes, although
the waveguide wall makes with theaxis. The coupling coeffi- e procedure and the concepts can be applied to any number

cients;;, are the same as the coupling coefficients for the cagemqdes. The coupled-mode equations for two forward propa-
of a perfectly conducting varying-radius circular waveguide [sbating modes in a uniform waveguide with ohmic wall loss are

[10]. . . . . obtained from (10) and (11) and are as follows:
In this paper, we have only considered a varying-radius per-

turbation. For more general deformations with the guide wall d — _
described byu(z) + 6(¢, z), where§ < q, such as waveg- dz A=G]A (18)
uides with ellipticity, curvature, or multifoil perturbations, the
boundary conditions in (1) and the coupling coefficients due f&d are as shown in (19a)—(19c) at the bottom of the following
loss in (8) or (11) are still valid to the zeroth ordewinThe next Page, wherek,, is the real part ofZ,,. In (19b), k., and’,,
higher order term is one order of magnitude smallef.iihus, » = 1, 2 are the axial and azimuthal components, respectively,
for coupling due to losses, the wall perturbations arising ffomof the power normalized magnetic fields of théh mode at the
can be neglected for smalleven thouglé may produce signif- wall. We notice that the “attenuation constant” and “phase con-
icant “lossless” coupling. stant” matrices are Hermitian, i.e.,

In a circular waveguide, the single-mode numbecs 7 take
the place of the entir€E,,,,,- or TM,,,,,-mode designation. The [a] =[] and[5] = [3]' (20)
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wheret denotes the transpose and conjugation. although the new modes with complex amplitudesnda, are

To solve the coupled-mode equations (18) for the unknowmcoupled, they are not power orthogonal, i.e., the total power
A(») with a given initial condition4,, at» = 0, we suppose that transported by the new modes is not the sum of the powers car-
the 2x 2 matrix[G] has two linearly independent eigenvectorsed by each mode individually. In confirmation of this state-
and these vectors are chosen to be the columns of 2 thatrix ment, we have shown independently in another place that the

[@]. Then, by using the change of variables eigenmodes of lossy-wall uniform waveguides are not power
orthogonal [13]. When the modes are degenerate, i.e., when in
A=[Qa. (21) (19¢)B1 = B2, [G] is normal. Thus, for degenerate modes only,

the new modes are not only decoupled, but they are also power
orthogonal. This conclusion is consistent with the previous work
done by Gustincic [14] and Collin [15] where they show that
d when a set of modes are degenerate in a uniform lossy-wall
d a=—[Ala (22a) waveguide, a new set of modes can be obtained by linear com-
bination of the original degenerate modes such that these new
where modes are uncoupled, as well as power orthogonal. It should
0 be emphasized that the coupled-mode formulation developed
[A] = Q] LAQ] = h)l ) } (22b) above is valid for both degenerate and nondegenerate modes.
2 By combining (21) and (22), the transmission maff&(z)]

Equation (18) reduces to

N

is a diagonal matrix with the eigenvalues 6f|[along its diag- S
onal. The eigenvalues can be obtained as follows:

[M] = [Qle [ (24a)
y1 = p1 4 p2 andys = g — iz (23a) where
_ia [er= 0
where T = { 0 e—w} . (24b)
1 The explicit expressions for the elements of the transmission
p = §(G11 + Gao) (23b) matrix are
1 1 _,. )
p2 = Q\/(Gll — G22)? + 4G12G21. (23c) Mu = 22 © "% [212 cosh(p122) — (Gr1 — Gaz) sinh(r2)]
(25a)
The eigenvalues; and~, above are distinct; hence, the two 1
corresponding eigenvectors are automatically independent [1#12 = — — G12¢” #** sinh(22) (25b)
Therefore, the diagonalization above is possible. he2
The change of variables by (21) implies that the eigenvectofg, — _ 1 Gy e sinh(pioz) (25¢)
of [G] are chosen as the new basis vectors. The column vector H2

a consists of the complex amplitudas, wherer = 1, 2 of the 1 . )
new set of modes as its components. The new set of modes %é? = 2—LL2 e [2u2 cosh(p2)+(G11 —Ga2) Slnh(ugz)].

actually the eigenmodes of the lossy-wall waveguide. (25d)

The system (22a) is uncoupled and the new normal modes

with complex amplitudesa; anda, propagate independently.
However, the coupling matripG] is not normal, i.e., it does not
commute with its conjugate transpose. Therefore, its eigenve%
tors are not orthogonal [12]. Hence, although the new basis vecin this section, we use (17) to calculate the ohmic power loss
tors are independent, they are not orthogonal. This shows thggr unit length. We then show that when more than one mode

IV. COMPARISON OFDISSIPATED POWER OBTAINED BY THE
OUPLED-MODE EQUATIONS AND THE POWER-LOSSMETHOD

|G| = |a]+j]8] (19a)

: wa(|hzl|2+|h¢1|2)dz : wa( S hath, bz d
1

o] =
U (habenan) R (ap )

(19b)

a= |0 g ]+ (190)
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propagates in the waveguide, the coupled-mode equations fiield. The power loss over a short distante can be derived
dict that the power loss per unit length varies along the wavexplicitly from (29) and (30) as follows:

guide due to the interference of the modal currents in the wall.,

We will also derive the dissipated power by the power-loss foj Ro|J,?ade dz

mula and show that the two methods above give the same regult Jo

over a very short waveguide length. This agreement is a partial_ /27T { [|A ? (Ih ?+h. |2)

validation of the coupled-mode equation method. “ Jo to oL #

B T_he total power carried by modes at any cross sectlrﬁh-:ls + [ As|? (|h¢2 24 |hz2|2)} 52
A" A. The power loss per unit length can then be determined by
making use of the coupled-mode equations (18) and relations sin </31_/32 5Z>
(20) to obtain n 2
B1— P
Yy (o] (26) 2
dz . [C—J((,ﬁl—,ﬁz)/Q)ézAloAzo (hqﬂh:;Q—’_thhZQ)
which can be expressed in terms of the input vedgras fol- +ej((f"l—f"Z)/Q)“A{OAQO(hZIh&
lows:
h21heo)| }dd).
AP (gt i
2 = 24} (IM][e][M]) 4, 27) (31)

Notice that only{«] appears in the above equation for the powedver a very short waveguide lengthy, the modal magnetic

loss. This is because thgs] part of coupling matriXG] is fields of a lossless waveguide (30) may be used here since the

anti-Hermitian and, hence, it does not contribute to loss. For thexdal fields are not significantly perturbed by the wall loss.

two-mode problem, (26) yields, in terms of the elementgf Thus, the dissipated power can be obtained from (31) by let-
ting 6z approach zero as follows:

_ ‘fl]: = 2( w1 + Aol + @124 s + 0y A1 43). . /"Z /27‘ B0 Padb s
(28) 62—0 Jq 0
Each of the first two terms on the right-hand side of the relation 5 5
above arises only due to the magnitude of a single modal ampli- =2 [(a11|A10| + azz| Az )
tude. The last two terms, however, arise from the coupling effect
due to the wall loss, and their values depend on the magnitudes + (OfbAloA?o + 041214%1420)} 6z. (32)

of both modes, as well as their relative phases. Hence, at loca-

tions along the waveguide where the modes are out-of-phase {ffifice that (28) and (32) yield the same result for the dissipated
our convention), power loss is small, but where the modes d&t@wer.

in-phase, power loss is larger. Thus, depending on the relative

phases of the modes, ohmic loss may be minimal at some loca- V- NUMERICAL RESULTS FORPROPAGATION OF

tions, while at others, the dissipated power may be appreciable. AN HE1;-LIKE MODE

The power loss can also be calculated by the following for- The hybridHE;; mode in a corrugated circular waveguide
mula: is an ideal mode for waveguide transmission systems [16],
= pom [17]. It is suited for low-loss transmission due to its very
/ / Ry|Is|Padpdz (29) low attenuation. It also has a Gaussian-like radiation pattern
0 0 when it is radiated from an open-ended waveguide and, hence,

whereJ; is the rms surface current that is obtained from thé couples strongly to the fundamental Gaussian free-space
total tangential magnetic field at the wall, ams the waveguide mode. ThetlE;; mode can be expanded in terms of the,,,
radius. We will show that (28) and (29) yield the same result f@d TMy,, modes of a smooth-wall waveguide at any given
the dissipated ohmic power at the wall over a short lerigth transverse plane. However, it can reasonably be represented by

Assume that the two modes have the following magnetic fieRnly the TE,; andTM;; modes with power compositions of
components tangent to the wall: approximately 85% and 15%, respectively, and a phase differ-

ence of 180 at the waveguide wall. When the two modes are
out-of-phase, the azimuthal components of the magnetic fields
of the two modes almost cancel each other at the waveguide
wall, which leads to the overall low ohmic loss.

wherer = 1, 2. The fields above are normalized such that the For our study, we assume that the mode mixture above is in-
power carried by theth mode i A,,,|2. The surface current at jected into a uniform smooth lossy-wall circular waveguide. In
the wall isJ; = H x a,, whereH is now the total magnetic Table |, we compare the results of the dissipated power over

th/ = Ay0h¢ye—j,ﬁyz andH., = Auohzue_jﬂpz (30)
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TABLE | _ 257 _

DISSIPATED POWER IN A LOSSY-WALL CIRCULAR WAVEGUIDE (OVER A g i Frequency = 60 GHz
LENGTHd) FOR ATE;; AND- TM; ; -MODE MIXTURE (POWER COMPOSITION § I G =58x107 mhos/m
85%TE;; AND 15%TM;;, WAVEGUIDE DIAMETER = .64 cm, FREQUENCY 20 ’

= 60 GHz, WALL CONDUCTIVITY = 7 X 10% S/m) 2 [
3 [
§ .
Modesin  phase Modes out of  phase g 15 i
=
length || Coupled mode Power-loss Coupled mode Power-loss xg 3
] [
5]
(d) equations formula equations formula 2 1.0 I
<
M5 5.4957x10°° 5.5218x10°° 1.1324x10°° 1.1340x107° R [
0
M10 2.8320x10°* 2.8391x10°° 4.8863x10™* 4.8885x10* § 0.5 [
A50 5.7266x10* 5.7295x10* 9.2626x10° 9.2632x10° g i
()] oLt T
0 1 2 3 4 5
0.5 Waveguide radius above cut-off radius of TM11 mode - percent
Frequency = 60 GHz
04 | ¢ = 5.8x10" mhos/m Fig. 2. Percent difference between fh&1,; attenuation constant calculated

by the coupled-mode equations and by the eigenmode expansion method
assuming a surface resistivity of ideal copper. Téfy ,, and tediT'M,, modes

E
2
bl
2 03| are included for the eigenmode expansion method.
9]
&
T o2l 0251 oupledmodecqn Radius=032cm
8 L —--- power lossmethod Frequency = 60 GHz
“ ¢ = 5.8x107 mhos/m
2 ol . 020
§o §
g =
s 3 0l1s
) N ———— g
0.0 0.5 1.0 1.5
: % 0.10
Radius (cm) N
g
Fig. 1. Magnitude of théT'E;;—TM;; coupling coefficient due to ohmic % 0.05
wall loss versus the guide radius in a circular waveguide assuming a surface !
resistivity of ideal copper. The cutoff radius for thé&/,; mode is 0.3047 cm.
0.00 1 I 1 i 1 i 1 L i Fl 1 n L I L L 1 1 ]
0.0 05 1.0 1.5 2.0 25 3.0 35 40 45 5.0
different waveguide lengths calculated from the coupled-mode Distance - z - (cm)

formulation and the power-loss formula (31) for a waveguide
with the wall resistivity of graphite. We notice that the calcuFig. 3. Power loss per unit length along a lossy-wall circular waveguide with
lated values from the two methods converge as the wavegulfios ™ et assuming a sutece resstuiy of deal copperl e
length becomes much smaller than the free-space wavelengt, respectively, and a phase difference of*180
In this table, we have also listed the results for the case where,
at the input of the waveguide section, the azimuthal componentth , and~. as their propagation constants. Therefore, we
of the magnetic fields of the two modes are in-phase and, hencan check the validity of the coupled-mode equations (18) near
they add at the wall. The power dissipated in a small lengthtise cutoff radius of th&'M;; mode by comparing- with that
almost five times greater for this case. obtained by other methods for obtaining the propagation con-
The injected TE;; and TM;; modes considered abovestants of eigenmodes of uniform smooth lossy-wall waveguides
couple energy due to the lossy nature of the wall. The cosudch as the eigenmode expansion method [18] or Jackson’s per-
pling coefficient—G4, can be calculated from (19), and itsturbational analysis method [19]. In Fig. 2, we have plotted
magnitude has been plotted versus the waveguide radiusthie percent difference between the attenuation constant of the
Fig. 1 for a circular copper waveguide with an input signal’M;; mode calculated by (23) and by the eigenmode expansion
of 60 GHz. As observed in this figure, near the cutoff radiumethod where teif'E;,, and tenI'M1,, modes were used. This
of the TM;; mode, the coupling coefficient becomes veryigure shows that there is only 2% deviation in the attenuation
large. In a uniform waveguide with its radius in this regiongonstant when the waveguide radius is only 0.1% above cutoff.
the backward couple@’E;; andTM;; modes will be excited Hence, we believe that the coupled-mode equations (18) cor-
with appreciable amplitude. Furthermore, higher ordiét;,, rectly represent the interaction of modes due to wall loss when
and TM;,, evanescent modes may also be excited with sm#lle waveguide radius is larger than 0.1% above the cutoff radius
amplitude. However, coupling to these modes is not includedtheTM;; mode. If the backward, as well as the forward prop-
in the coupled-mode formulation (18). agatingTE;; andTM;; modes are used in the coupled-mode
As was mentioned in Section Ill, the modes described by equations, this restriction can be relaxed, i.e., in this case, the
(22) define the eigenmodes of a uniform lossy-wall waveguideaveguide radius may be chosen to be closer td'tHg; cutoff
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—— coupled mode eqn . 0.388
6 - —-—- power-loss method  Radius =0.32 cm Radius =0.32 cm
Frequency = 60 GHz [
5 o = 7.0x1 04 mhos/m 0.387 Frequency = 60 GHz
¢ = 5.8x107 mhos/m
6 3 i
4 5 0.386
B -
= =
N
< =¥
3 g |
% 5 0385
J 2
= 0.384 |-
T
0.383 TSN S I NNT R WU SRR [N WU SN S TN SN ST S S S NN SR U S S |
il ) . ) . . ) 0 1 2 3 4 5

0 l— —t . M-
00 05 1.0 1.5 2.0 25 3.0 35 40 45 5.0

Distance - z - cm Distance - z - (cm)

Fig. 4. Power loss per unit length along a lossy-wall circular waveguide wiffig. 6.  Amplitude of thél'M,, mode (of the['E,, andTM,, combination)

a 0.64-cm diameter assuming a surface resistivity of ideal graphitéI Fhe  along the lossy-wall circular waveguide with 0.64-cm diameter assuming a
andTM;; modes are injected at= 0 with a power composition of 85% and surface resistivity of ideal copper.

15%, respectively, and a phase difference 0f?180

0.40 - --- copper
[ — graphite
0.923 Radius = 0.32 cm e
_ 0.38
0.922 Frequency = 60 GHz I Radius = 0.32 cm
922 & - ; o I
¢ = 5.8x10" mhos/m ,.g 036 | Frequency = 60 GHz
(] =1 L
2 0921 =
= g o034
E- < I
0.920 -
< L
0.32
0919 i
L 0‘30 I SUEPTNT U WE WS [N T TS T U NS U TN T S (N U S S 1
0918 0 1 2 3 4 5
I8 e e Distance - z - (cm
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Fig. 7.  Amplitude of théT'E;; mode (of théT'E;; andTM;; combination)

Distance - z - (cm)
along the lossy-wall circular waveguide with 0.64-cm diameter for both copper

Fig. 5. Amplitude of theTE;, mode (of théTE,, andTM;, combination) and graphite waveguides.
along the lossy-wall circular waveguide with 0.64-cm diameter assuming a
surface resistivity of ideal copper. - .
y PP We see that the coupling coefficients, here, near the cutoff of

either mode also become very large. This is because the radial

radius than the above-mentioned 0.1%. This could be importaoimponent of the electric field and the axial component of the
in analyzing the cavity region of gyrotrons that often operat@agnetic field of the TE modes and the azimuthal component
very close to the cutoff frequency of the mode being generated.the magnetic field of the TM modes become very large at

The effect of the coupled backward propagafiig;; mode cutoff. The divergence of the coupling coefficients at cutoff
on this same mode propagating in the forward direction inaise due to neglecting the backward propagating modes. In the
uniform waveguide with a radius near the cutoff radius of theoltage—current formulation, the coupling coefficients given by
TM;; mode can be demonstrated as follows. In the voltage—c(r) are finite everywhere, even at cutoff.
rent formulation of the coupled-mode equations (6) for uniform The complex-amplitude coupled-mode equations (10) are not
waveguideg# = 0), we neglect the effect of coupling, i.e., resuitable to study the effect of the coupled evanescent modes. In
tain only ther = v term wherev is the mode designation for this situation, it is preferable to use the voltage—current formu-
theTM;; mode. We can then obtain an analytical expression fation of the coupled-mode equations (6), which can incorporate
the propagation constant of ti81;; mode, which is identical evanescent, as well as propagating modes.
with that obtained by Jackson [19] for uniform lossy-wall cir- In Fig. 3, the ohmic wall loss per unit length from (27) has
cular waveguides. This expression gives a sensible result ebeen plotted over several beat wavelengthgbf; andTM;;
at or below the cutoff radius of tHEM;; mode. However, if we modes in a 0.64-cm-diameter copper waveguide. The ohmic
neglect the effect of the backward coupled mode, the resultingll loss per unit length has been plotted for a graphite wave-
attenuation constant of thiEM;; mode becomes very large neaguide with the same diameter shown in Fig. 4. Graphite has
the cutoff radius. much higher wall resistivity than copper and, hence, can be used

In varying-radius waveguides with perfectly conductingn the design of lossy wavguides. As seen from these two fig-
walls, the coupling coefficients are given by (12) and (13lres, at the waveguide input, when the two mode are out-of-
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Fig. 8. Amplitude of thél'M,; mode (of théT'E,; andTM;,, combination) Fig. 10. Amplitude of th&'M,; mode (of thé['E;; andTM,; combination)
along the lossy-wall circular waveguide with 0.64-cm diameter for both coppalong the lossy-wall circular waveguide with 2.779-cm diameter for both copper
and graphite waveguides. and graphite waveguides.

1

0.388 Raduis = 1.389 cm mode due to ohmic coupling although, as expected, the total

Frequency = 60 GHz power in the two modes monotonically decreases from the ini-
0 = 5.8x107 mhos/m tial value.

0.387
VI. CONCLUSIONS

In this paper, we have derived the effect of ohmic wall loss on
the coupling coefficients in a varying-radius circular waveguide.
We have shown that the coupled-mode equations correctly pre-
dict that the power loss along the waveguide may vary and, in
this case, depends on the relative phases of the modes, as well

0.385 Mtttk P as their magnitudes. We have shown that, in high-power appli-
0 5 10 15 20 25 30 o .
' cations, this effect will lead to the creation of “hot” regions on
Distance (cm) the waveguide wall for the case of propagation oty ; -like
! ) o mode input to a uniform overmoded smooth lossy-wall wave-
Fig. 9. Amplitude of théI'M,; mode (of theTE,; andTM;; combination) ide. We h h that th | litude f |

along the lossy-wall circular waveguide with 2.779-cm diameter assumingg_é“ €. Ve haveé shown tha .e complex-amplitude Ormu. a-
surface resistivity of ideal copper. tion of the coupled-mode equations for the forward propagating
modes is valid for the multimode analysis of uniform waveg-

phase, ohmic wall dissipation is very small due to the canceligides if the waveguide radius is larger than 0.1% above the
tion of the azimuthal components of the magnetic fields. HowUtoff radius of the highest order incident mode (in our study,
ever, as can be seen from the graph, at approximately haif’§ TMi1 mode). If the backward coupled modes are also in-
beat wavelength from the input, the power loss becomes m&Jgded, the coupled-mode equations are valid even nearer to the

imum. At this location, th&'E;; andTM;; modes are in-phase cutoff radius.
and the magnetic-field components add. The pattern then almost
repeats itself after each beat wavelength. In these figures, we

i 1] S. E. Miller, “Coupled wave theory and waveguide applicatiorzgll
have also plotted the result obtained by means of the atte_nua[— Syst. Tech, Jpp. 661710, May 1054,
tion constants of the two separate modes using the conventiona) s:Rr. seshadri, “Cylindrical waveguide mode converter for azimuthally

power-loss method which, as seen, incorrectly gives smoothly symmetric transverse electric modeBrbc. Inst. Elect. Engpt. H, vol.
135, no. 6, pp. 420-425, Dec. 1988.

decaymg power Iqss.allong the Wavegu'de' In Figs. 5 and 6, th%] R. A. Schill, Jr.and S. R. Seshadri, “Optimization of a bumpy cylindrical
amplitudes of the individual modes are plotted for copper wave-  waveguide mode convertetyit. J. Infrared Millim. Wavesvol. 7, no. 8,

; i : P pp. 1129-1167, 1986.
gmde. Figs. 7 and 8 compar.e the ampI,ItUdeS of the mdl,VIduaI[4] H. G. Unger, “Circular waveguide taper of improved desigsell Syst.
modes for copper and graphite waveguides. The ripple-like be- " tech, 3, pp. 899-912, July 1958.
havior of the curves in Figs. 5-8 arise from the coupling be- [5] J. L. Doane, “Propagation and mode coupling in corrugated and

. smooth-wall circular waveguide fht. J. Infrared Millim. Wavesvol.
tween the modes due to wall loss. If the effect of coupling was 13, pp. 123-170, 1985.

neglected, the curves would be smoothly decaying exponentialé] H. Li and M. Thumm, “Mode coupling in corrugated waveguides with

(almost straight lines). In Figs. 9 and 10, we have also plotted Eiryé';%ﬁ?f imlpgegf‘”ce and diameter change: J. Electron, vol. 71,

the amplitude of th8'M;; mode in a larger diameter waveguide (7] J. shafii and R. J. Vernon, “Mode coupling in coaxial waveguides with

over a beat wavelength for copper and graphite waveguides, re- varying-radius center and outer conductot£EE Trans. Microwave
tivelv. Th rves demonstrate that her&Me; mod Theory Tech.vol. 43, pp. 582-591, Mar. 1995.
specuvely. These curves demonstrate that he € mode [8] T.B. A. Senior, “Impedance boundary conditions for imperfectly con-

actually gains a small amount of power initially from tié, ducting surfaces,Appl. Sci. Resvol. 8, pp. 418-436, 1960.
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